III B.Tech - II Semester – Regular Examinations - APRIL 2024

INFORMATION THEORY AND CODING (HONORS in ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks			
	UNIT-I							
1	a)	A discrete memory less system is emitting	L4	CO1	8 M			
		the symbols m1, m2, m3, m4, m5, m6 and						
		m7 with probabilities 0.12, 0.08, 0.4, 0.08,						
		0.2, 0.08 and 0.04. Apply Huffman coding						
		to the above message symbols. Calculate the						
		coding efficiency.						
	b)	Illustrate the importance of parameters	L2	CO1	6 M			
		i) Information						
		ii) Entropy						
		iii) Information rate						
		iv) Channel capacity						
OR								
2	a)	Define mutual information. State and prove	L2	CO1	6 M			
		the properties of mutual information?						

	b)	Illustrate the encoding processing performed	L4	CO1	8 M
		by the Lempel-Ziv algorithm on the binary			
		sequence 000101110010100101.			
			L		
		UNIT-II			
3	a)	If G and H are the generator and parity	L2	CO2	6 M
		check matrices respectively, Explain			
		syndrome and error detection of linear block			
		codes.			
	b)	For a systematic (6, 3) linear block code, the	L4	CO2	8 M
		parity matrix is			
		$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 4 & 4 \end{bmatrix}$			
		$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$			
		i)Find all possible code vectors			
		ii)Find out the minimum distance of the			
		codes			
		iii)How many errors can be detected and			
		corrected by this code?			
		OR			
4	a)	Explain the error detection and correction	L2	CO2	7 M
		capabilities of linear block code?			
	b)	Find the standard array for a (6,3) linear	L4	CO2	7 M
		block code whose generator matrix			
		$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$			

		UNIT-III			
5	a)	A (15, 5) linear cyclic code has a generator polynomial $g(x) = 1+x+x^2+x^4+x^5+x^8+x^{10}$.	L4	CO3	8 M
		Draw block diagram of an encoder and			
		calculate the code word for message			
		$m=1+x^2+x^3+x^4$			
	b)	Explain the procedure of Majority Logic	L2	CO3	6 M
		Decoding.			
		OR			
6	a)		L4	CO3	6 M
		polynomial $g(x) = 1+x+x^3$. Find the code			
		vectors in systematic and nonsystematic			
		form for the message vectors [1 0 0 1] and			
		[1 1 0 1].			
	b)		L5	CO3	8 M
		$g(x) = 1+x+x^3$, if the received vector is			
		[1 0 0 0 0 1 1]. Find			
		i) Syndrome vector.			
		ii) All error patterns correspond to			
		syndrome vectors. iii) Decode the correct transmitted vector.			
		III) Decode the concet transmitted vector.			
	T	UNIT-IV	Γ	· · · ·	
7	a)	A $(3,1,2)$ convolutional code is given by	L4	CO3	8M
		$g1 = [1 \ 0 \ 1], g2 = [1 \ 1 \ 0] and g3 = [1 \ 1 \ 1],$			
		(i) Draw the encoder diagram (ii) Find the			
		code vector for the message vector			
		$d=[1 \ 1 \ 1 \ 0 \ 1]$ using code tree & state			
		diagram.			

	b)	Explain about maximum likelihood	L2	CO3	6M
		decoding of Convolutional code?			
	I	OR	1	11	
8	a)	For the convolutional encoder given,	L6	CO3	10M
		Generate the convolutional code for the			
		input [110101].			
		mod – 2 adder			
		Output $1 = x_1$			
		Input sequence msg m1 m2 Switch Final output			
		$\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1\mathbf{x}_2\mathbf{x}_1\mathbf{x}_2\dots$			
	b)	mod-2 adder	10	CO^2	4M
	b)		LZ	CO3	4111
		code in ARQ system. UNIT-V			
9	0)	For double error correcting BCH code of	ΤΛ	CO4	7M
2	a)	length 15 for the generator polynomial	L4	04	/ 1 V1
		$g(x)=x^8+x^7+x^6+x^4+1$, find the systematic			
		g(x) = x + x + x + x + 1, find the systematic encoded code vector for the message			
		$d=[1\ 1\ 0\ 0\ 1\ 0\ 1].$			
	b)	Find the error locator polynomial for double	Ι.4	CO4	7M
	0)	error correcting BCH code, if			/ 1/1
		$r(x)=x^3+x^4+x^8+x^9$			
		OR			
10	a)	Construct the parity check matrix for double	L4	CO4	8M
		error correcting BCH code of length 15.			
	b)	Explain the decoding procedure of BCH	L2	CO4	6M
		codes.			